Dynamic Skill Accumulation, Education Policies and the Return to Schooling

Christian Belzil Jörgen Hansen Xingfei Liu

2013

Christian Belzil, Jörgen Hansen, Xingfei Liu (Dynamic Skill Accumulation, Education Polic

013 1 / 19

• Dynamic Discrete Choice Model of Skill Accumulation (Learning-by-Doing) with Comparative Advantages

- Schooling, Labor Supply (intensive and extensive margins), household production
- Arbitrage between the relative rates at which education and market-work produce skills and Utility (Disutility) of labor supply intensity, schooling, and hometime
- Not a Free Lunch Model
- Returns to Schooling:
 - Effect of education on entry earnings
 - Life Cycle Return: effect on earnings dynamics
- Applied to sample of white males in the 79 NLSY cohort

- Education Policies targeting
 - High school drop-outs: Compulsory high school graduation policy and a subsidy to high school graduation
 - Broader population: Subsidies to attend higher education acting as a reduction in the cost of attending college (grade 13 to grade 16).
- We use counterfactual policies to generate IV estimates and investigate their meaning

- Who would be affected by each specific policy ?
- What would be the impact of the policies
 - on accumulated human capital?
 - on early life-cycle earnings?
 - on total labor supply?
- What would IV estimates of the return to schooling based on those same policy interventions reveal?
- Focus on early life-cycle (age 30 or 35)

• Bridge gaps between various literatures

- Structural Dynamic Schooling Literature (Keane and Wolpin, 1997)
- Treatment Effects (Roy Model) applied to Returns to Schooling: Imbens and Angrist (1994), Heckman, and Vytlacil (2005)
- Earnings Dynamics literature: debates the validity of the exogenous heterogenous income profile model vs. Persistent Shocks Model
- Labor supply and Human capital (Imai and Keane, 2004)
- Recent literature (estimated) modeling earnings dynamics: Hugget, Ventura and Yaron (2012, AER), Altonji, Smith and Vidangos (ECTA, 2013), Magnac, Pistolesi and Roux (2013)

- Individual allocate discrete periods between 5 states between age 16-35.
 - S : Schooling

Basic structure

- H : Work 2501 hours or more
- M : Work between 1501 and 2500 annual hours
- L : work less than 1500
- H : Household Activities
- Individuals Maximize Lifetime Utility and solve a Bellman equation.
- The Essence of Skill Formation is a **"Learning-by-Doing Model**" (not a Ben Porath model)

Behavioral Model-Utilities

$$U_{it}^{h} = w_{it} + \varepsilon_{it}^{h}$$

$$U_{it}^{m} = \alpha_{i}^{m} + \delta_{w}^{m} \cdot w_{it} + \delta_{s}^{m} \cdot S_{it} + \delta_{1}^{m} \cdot age_{it} + \delta_{2}^{m} \cdot age_{it}^{2} + \varepsilon_{it}^{m}$$
$$U_{it}^{l} = \alpha_{i}^{l} + \delta_{w}^{l} \cdot w_{it} + \delta_{s}^{l} \cdot S_{it} + \delta_{1}^{l} \cdot age_{it} + \delta_{2}^{l} \cdot age_{it}^{2} + \varepsilon_{it}^{l}$$

$$U_{it}^{s} = \alpha_{i}^{s} + \alpha_{1}^{s} \cdot I(S_{t} = 11) + \alpha_{2}^{s} \cdot I(12 \le S_{t} < 14) + \alpha_{3}^{s} \cdot I(14 \le S_{t} < 16) + \alpha_{4}^{s} \cdot I(16 \le S_{t}) + \alpha_{5}^{s} \cdot I(d_{t-1,s} = 0) + \varepsilon_{it}^{s}$$

$$U_{it}^r = lpha_i^r + lpha_s^r \cdot S_{it} + lpha_1^r \cdot \textit{age}_{it} + lpha_2^r \cdot \textit{age}_{it}^2 + arepsilon_{it}^r$$

イロト イヨト イヨト イヨト

$$w_{it} = \lambda_i + \lambda_i^s \cdot S_{it} + \lambda_i^l \cdot L_{it} + \lambda_i^m \cdot M_{it} + \lambda_i^h \cdot H_{it} + \lambda_1^w \cdot age_{it} + \lambda_2^w \cdot age_{it}^2 + \varepsilon_{it}^w$$

$$\lambda_i = \lambda_0 + \lambda_1 \cdot Math_i + \lambda_2 \cdot Verbal_i + \lambda_3 \cdot Conf_i + \lambda_4 \cdot SE_i + \lambda_5 \cdot PA_i$$

$$\lambda_{i}^{s} = \exp(\lambda_{0}^{s} + \lambda_{1}^{s} \cdot Math_{i} + \lambda_{2}^{s} \cdot Verbal_{i} + \lambda_{3}^{s} \cdot Conf_{i} + \lambda_{4}^{s} \cdot SE_{i} + \lambda_{5}^{s} \cdot PA_{i})$$
$$\lambda_{i}^{u} = \exp(\lambda_{0}^{u} + \lambda_{1}^{u} \cdot Math_{i} + \lambda_{2}^{u} \cdot Verbal_{i} + \lambda_{3}^{u} \cdot Conf_{i} + \lambda_{4}^{u} \cdot SE_{i}$$
$$+ \lambda_{5}^{u} \cdot PA_{i} + \lambda_{6}^{u} \cdot HS_{it} + \lambda_{7}^{u} \cdot CO_{it}) \text{ for } u = h, m, l$$

イロト イ団ト イヨト イヨト

Behavioral Model-

Information Set/Random Shocks

$$\Omega_t = \{\varepsilon_{it}^s, \varepsilon_{it}^r, \varepsilon_{it}^h, \varepsilon_{it}^m, \varepsilon_{it}^l, S_t, R_t, L_t, M_t, H_t\}$$

• $\{\varepsilon_{it}^{s}, \varepsilon_{it}^{r}, \varepsilon_{it}^{h}, \varepsilon_{it}^{m}, \varepsilon_{it}^{l}\}$ are i.i.d. extreme-value distribution (Rust, 1987). ε_{it}^{w} , is assumed to follow a Normal (0, σ_{w}^{2})

$$V_t^k(\Omega_t) = U_t^k + eta \mathsf{E} V_{t+1}(\Omega_{t+1} \mid \mathsf{d}_{kt} = 1) ext{ for } k = \mathsf{s}, \mathsf{r}, \mathsf{l}, \mathsf{m}, \mathsf{h}$$

$$EV_{t+1}(\Omega_{t+1} \mid d_{kt} = 1, \Omega_t) = E \max_k \{ U_{t+1}^k(\Omega_{t+1}) + F(\Omega_{t+2}(\Omega_{t+1}, d_{kt+1})) \}$$

F(.) = Polynomial in state variables

• Vector of observed outcomes $O_{it} = \{d_{ist}, d_{iht}, d_{imt}, d_{ilt}, d_{irt}, w_{it}\}$ where w_{it} denotes observed wage outcome

$$L_{i}(.) = \prod_{i=1}^{l} \Pr(O_{it} \mid Math_{i}, Verbal_{i}, Conf_{i}, SE_{i}, PA_{i}) \ge 202$$

Christian Belzil, Jörgen Hansen, Xingfei Liu (Dynamic Skill Accumulation, Education Polici

Labor Supply (Intensive and extensive Margins)and School by Age

Empirical Frequencies

	Schooling	Labor Supply			Home
		Low	medium	High	
Age					
20	0.41	0.27	0.18	0.07	0.07
25	0.07	0.23	0.43	0.22	0.05
30	0.03	0.18	0.44	0.31	0.04
35	0.01	0.13	0.44	0.35	0.07

A E A

Accumulated Choices by Age 30

	Schooling	Employment		Home	
		Low	medium	High	
Predicted	13.3	2.9	4.3	2.4	0.5
Actual	13.3	1.6	5.4	2.3	0.7

Christian Belzil, Jörgen Hansen, Xingfei Liu (Dynamic Skill Accumulation, Education Polici

イロト イ団ト イヨト イヨト

Skill Formation Technology

Education vs market-based skill formation

Schooling	Average 0.067	Std. Dev . 0.012
Labor Supply (Low)		
Drop Out	0.033	0.007
High School	0.036	0.008
College	0.033	0.007
Labor Supply (Medium)		
Drop Out	0.085	0.020
High School	0.085	0.020
College	0.105	0.025
Labor Supply (High)		
Drop Out	0.070	0.019
High School	0.074	0.020
College	0.116	0.031

Christian Belzil, Jörgen Hansen, Xingfei Liu (Dynamic Skill Accumulation, Education Polici

э

A (1) > A (1) > A

Compulsory High School Graduation, High School and College Subsidies

• Compulsory High School Graduation: Attendance for the first x_i periods, where x_i is defined as the difference between 12 (the minimum required) and initial schooling attainment (recorded by age 16) individuals start optimizing at date $t_i = x_i + 1$.

$$d_{s1i} = d_{s2i} = ..d_{sxi} = 1 \forall i$$

- High School Graduation Subsidy: A reward equivalent to increasing δ_{1s} by 1.0
- Higher Education Subsidies: A reward conditional on college attendance by increasing δ_{2s} and δ_{3s} (0.25, 0,50 and 1.0)

Policy Effects: High School

	Compulsory	Subsidy
$m{\%}$ Δ in human capital		
Overall	4.5%	1.2%
Drop-outs	15.2%	3.7%
$m{\%}$ Δ in life-cycle earnings		
Overall	2.6%	0.3%
Drop-outs	6.0%	0.9%
% Δ in total Labor Supply		
Overall	0.6%	-0.2%
Drop-outs	-0.6%	-0.6%
Δ in schooling (years)		
Overall	0.6	0.2
Drop-outs	2.3	0.6

- 4 個 ト 4 注 ト 4 注

Policy Effects: College

% Δ in human capital	High	Medium	Low
Overall	4.8%	2.8%	1.3%
High school or less	8.7%	4.8%	2.4%
Some college	1.4%	1.0%	0.4%
$m{\%}$ Δ in life-cycle earnings			
Overall	-5.8%	-2.9%	-2.0%
High school or less	-4.7%	-1.9%	-1.1%
Some college	-6.8%	-3.8%	-2.8%
$\%$ Δ in total labour supply			
Overall	-7.8%	-4.0%	-2.5%
High school or less	-7.3%	-3.3%	-1.8%
Some college	-8.2%	-4.7%	-3.1%
Δ in Schooling			
Overall	1.3	0.7	0.4
High school or less	1.4	0.7	0.3
Some college	1.1	0.7	0.4
-		• • • • • • • • • • • • • • • • • • •	<=><=><=>

- Compulsory schooling would raise average human capital of drop-outs by 15% without reducing life-cycle earnings
- Higher Education subsidies may be designed so to obtain same effects on human capital but reduce total earnings
- No scope for raising labor supply (intensive and extensive margins) of the more educated
- Much more effective to focus on high school drop outs

What would IV Estimates Reveal?

	Compulsory	Subsidy	
	High school	High School	
	IV (st. error)	IV (st error)	
Age 25	0.037 (0.050)	0.039 (0.112)	

Age 30 0.058 (0.034) 0.067 (0.083)

	Subsidy	Subsidy	Subsidy
	High IV (st. error)	Medium IV (st error)	low IV (st error)
Age 25	0.019 (0.015)	0.020 (0.028)	0.018 (0.054)
Age 30	0.033 (0.011)	0.035 (0.020)	0.031 (0.037)

イロト イ押ト イヨト イヨト

IV Estimation

- Compulsory High School Graduation would lead to fundamentally imprecise IV estimates (for with males)
- Subsidies may be manipulated so to obtain an arbitrarily large precision
- IV generated from subsidies are disconnected from the identity of those affected
 - interplay between dynamics and heterogeneity
 - affected by labor supply intensity adjustments
- Impossible to make sense of it.

- We focussed on US white males, but what about other ethnic groups?
- We have analyzed counterfactual reactions to changes in education policies, but what about changes in education and labor supply induced by changes in the skill formation technology
 - how would education and life-cycle labor supply vary with changes in inequality (or wage dispersion)?
 - what would be the effect of a permanent income tax change on education and labor supply?