WHAT DO DATA ON MILLIONS OF U.S. WORKERS SAY ABOUT LIFE CYCLE INCOME RISK?¹

Fatih Guvenen

Minnesota and NBER

Fatih Karahan

New York Fed

Serdar Ozkan

Federal Reserve Board

Jae Song

SSA

Workshop on the Estimation of Economic Models of Earnings Dynamics June 13, 2014

¹ The findings and conclusions expressed are solely those of the authors and do not represent the views of Federal Reserve Board, Federal Reserve Bank of New York or SSA.

$1. How \ensuremath{\text{big}}$ are earnings shocks?

- 2. How persistent are they?
 - Do positive and negative shocks have similar persistence?
- 3. How do the properties of shocks vary over the life cycle?
 - e.g., standard deviation, skewness, kurtosis, etc.
- 4. Are shocks log normally distributed? How about higher order moments?

- 1. How big are earnings shocks?
- 2. How persistent are they?
 - Do positive and negative shocks have similar persistence?
- 3. How do the properties of shocks vary over the life cycle?
 - e.g., standard deviation, skewness, kurtosis, etc.
- 4. Are shocks log normally distributed? How about higher order moments?

- $1. How \ensuremath{\text{big}}$ are earnings shocks?
- 2. How persistent are they?
 - Do positive and negative shocks have similar persistence?
- 3. How do the properties of shocks vary over the life cycle?
 - e.g., standard deviation, skewness, kurtosis, etc.
- 4. Are shocks log normally distributed? How about higher order moments?

- $1. How \ensuremath{\text{big}}$ are earnings shocks?
- 2. How persistent are they?
 - Do positive and negative shocks have similar persistence?
- 3. How do the properties of shocks vary over the life cycle?
 - e.g., standard deviation, skewness, kurtosis, etc.
- 4. Are shocks log normally distributed? How about higher order moments?

Conclusions

This Paper

Existing work:

- 1. Small survey-based data sets, e.g., the PSID
 - between 500 to 2000 individuals per year
- 2. Employ covariance matrix estimation (CME), developed for a data-constrained environment

- 1. Large and clean administrative data set
 - as many as 5,000,000 individuals per year.
- 2. Move beyond CME and target economically significant moments.

Conclusions

This Paper

Existing work:

- 1. Small survey-based data sets, e.g., the PSID
 - between 500 to 2000 individuals per year
- 2. Employ covariance matrix estimation (CME), developed for a data-constrained environment

- 1. Large and clean administrative data set
 - as many as 5,000,000 individuals per year.
- 2. Move beyond CME and target economically significant moments.

This Paper

Existing work:

- 1. Small survey-based data sets, e.g., the PSID
 - between 500 to 2000 individuals per year
- 2. Employ covariance matrix estimation (CME), developed for a data-constrained environment

- 1. Large and clean administrative data set
 - as many as 5,000,000 individuals per year.
- 2. Move beyond CME and target economically significant moments.

Conclusions

This Paper

Existing work:

- 1. Small survey-based data sets, e.g., the PSID
 - between 500 to 2000 individuals per year
- 2. Employ covariance matrix estimation (CME), developed for a data-constrained environment

- 1. Large and clean administrative data set
 - as many as 5,000,000 individuals per year.
- 2. Move beyond CME and target economically significant moments.

- Representative sample of US males covering 34 years: 1978 to 2011
- Salary and wage workers (from W2 forms)
- Individuals aged 25-60
- Key Advantages:
 - Very large sample size (200+ million observations)
 - No survey response error
 - No sample attrition
 - No top-coding

- Representative sample of US males covering 34 years: 1978 to 2011
- Salary and wage workers (from W2 forms)
- Individuals aged 25-60
- Key Advantages:
 - Very large sample size (200+ million observations)
 - No survey response error.
 - No sample attrition
 - No top-coding

- Representative sample of US males covering 34 years: 1978 to 2011
- Salary and wage workers (from W2 forms)
- Individuals aged 25–60
- Key Advantages:
 - Very large sample size (200+ million observations)
 - No survey response error
 - No sample attrition
 - No top-coding

- Representative sample of US males covering 34 years: 1978 to 2011
- Salary and wage workers (from W2 forms)
- Individuals aged 25-60
- Key Advantages:
 - Very large sample size (200+ million observations)
 - No survey response error
 - No sample attrition
 - No top-coding

MOVING BEYOND THE COVARIANCE MATRIX

- CME method was developed for a severely dataconstrained environment.
 - Not a constraint here.
- One problem with CME is that selecting among rejected models is very hard:
 - moments that are missed do not have clear economic interpretations.
- Also ignores higher order moments, which we find to be very important.

MOVING BEYOND THE COVARIANCE MATRIX

- CME method was developed for a severely dataconstrained environment.
 - Not a constraint here.
- One problem with CME is that selecting among rejected models is very hard:
 - moments that are missed do not have clear economic interpretations.
- Also ignores higher order moments, which we find to be very important.

MOVING BEYOND THE COVARIANCE MATRIX

- CME method was developed for a severely dataconstrained environment.
 - Not a constraint here.
- One problem with CME is that selecting among rejected models is very hard:
 - moments that are missed do not have clear economic interpretations.
- Also ignores higher order moments, which we find to be very important.

Conclusions

This Paper

- 1. Document new empirical facts on life cycle earnings dynamics
- 2. Estimate lifecycle labor income risk
 - by matching economically important moments (as opposed to the "covariance matrix of income residuals")
- 3. Provide a reliable "user's guide" for earnings process specifications.

Conclusions

This Paper

- 1. Document new empirical facts on life cycle earnings dynamics
- 2. Estimate lifecycle labor income risk
 - by matching economically important moments (as opposed to the "covariance matrix of income residuals")
- 3. Provide a reliable "user's guide" for earnings process specifications.

Conclusions

This Paper

- 1. Document new empirical facts on life cycle earnings dynamics
- 2. Estimate lifecycle labor income risk
 - by matching economically important moments (as opposed to the "covariance matrix of income residuals")
- 3. Provide a reliable "user's guide" for earnings process specifications.

Conclusions

This Paper

- 1. Document new empirical facts on life cycle earnings dynamics
- 2. Estimate lifecycle labor income risk
 - by matching economically important moments (as opposed to the "covariance matrix of income residuals")
- 3. Provide a reliable "user's guide" for earnings process specifications.

NEW EMPIRICAL FACTS

FOUR SETS OF EMPIRICAL FACTS

- 1. Average income growth over the life cycle
- 2. Cross-sectional moments of earnings growth

3. Short- and long-run dynamics of income growth

- 4. Scarring Effects of Long-Term Unemployment
- 5. Distribution of Lifetime Income (skip today)

FOUR SETS OF EMPIRICAL FACTS

- 1. Average income growth over the life cycle
- 2. Cross-sectional moments of earnings growth

3. Short- and long-run dynamics of income growth

- 4. Scarring Effects of Long-Term Unemployment
- 5. Distribution of Lifetime Income (skip today)

FOUR SETS OF EMPIRICAL FACTS

- 1. Average income growth over the life cycle
- 2. Cross-sectional moments of earnings growth
- 3. Short- and long-run dynamics of income growth

- 4. Scarring Effects of Long-Term Unemployment
- 5. Distribution of Lifetime Income (skip today)

FOUR SETS OF EMPIRICAL FACTS

- 1. Average income growth over the life cycle
- 2. Cross-sectional moments of earnings growth

3. Short- and long-run dynamics of income growth

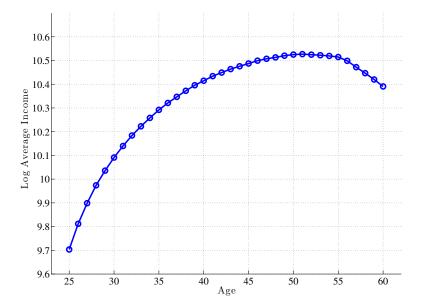
- 4. Scarring Effects of Long-Term Unemployment
- 5. Distribution of Lifetime Income (skip today)

Conclusions

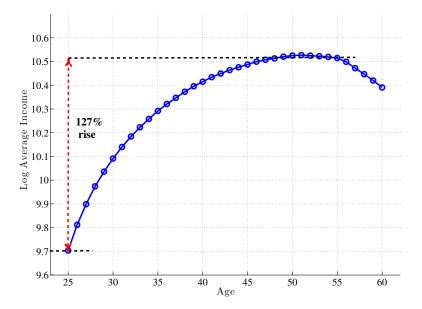
FOUR SETS OF EMPIRICAL FACTS

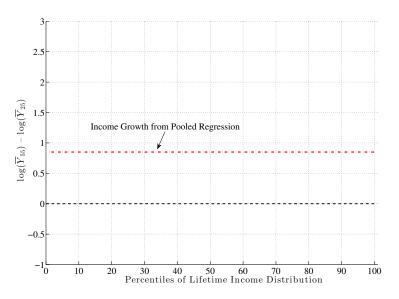
1. Average Income growth over the life cycle

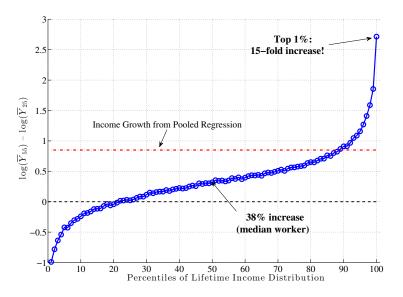
I. Age Profile of Labor Income

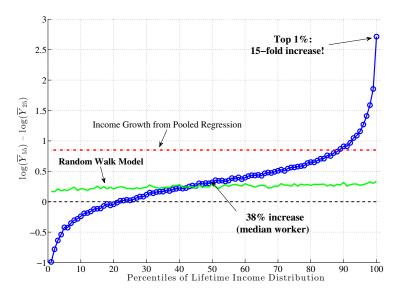


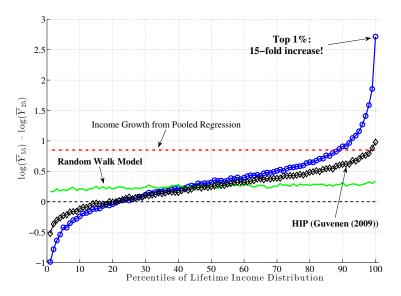
I. Age Profile of Labor Income











FOUR SETS OF EMPIRICAL FACTS

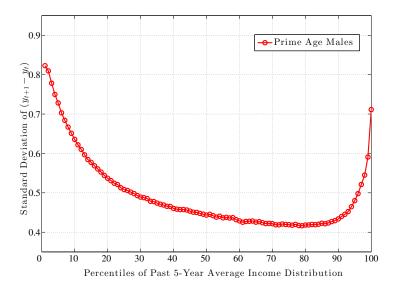
- $1. \ \mbox{Income growth over the life cycle}$
- 2. Cross-sectional moments of earnings growth: $y_{t+k} y_t$

3.

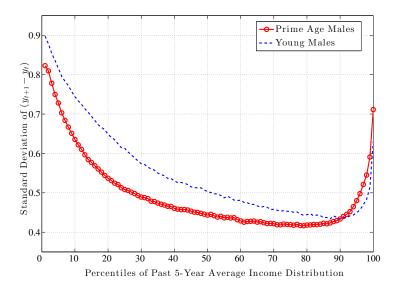
4.

Standard Deviation and Skewness

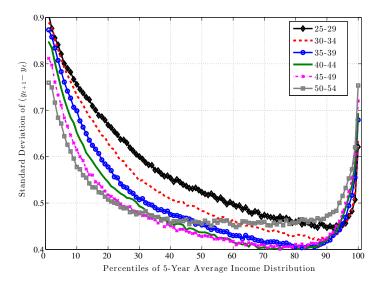
II.A STANDARD DEVIATION OF $y_{t+1} - y_t$

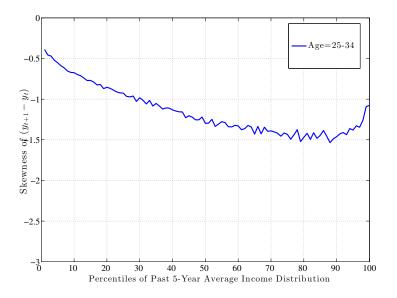


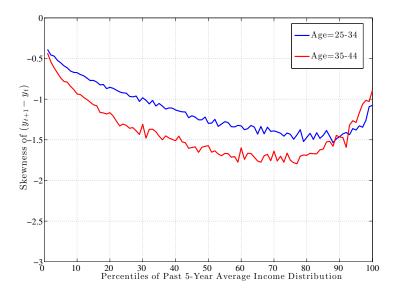
II.A STANDARD DEVIATION OF $y_{t+1} - y_t$

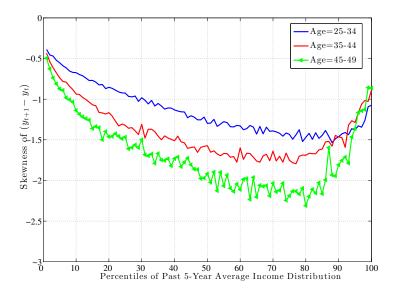


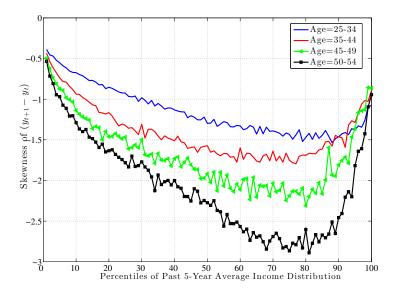
II.A STANDARD DEVIATION OF $y_{t+1} - y_t$





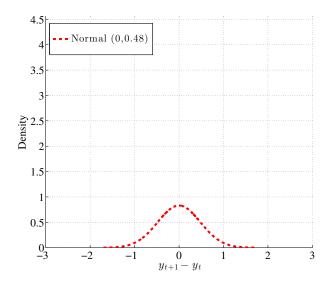




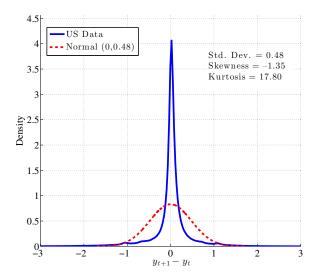


Kurtosis

II.C HISTOGRAM OF $y_{t+1} - y_t$



II.C HISTOGRAM OF $y_{t+1} - y_t$

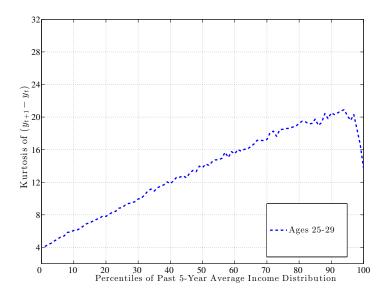


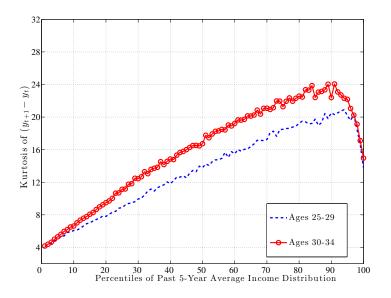
II.C DISTRIBUTION OF INCOME CHANGES

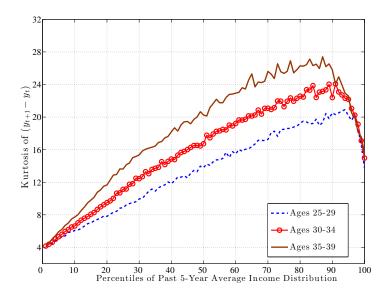
	$Prob(\mathbf{y}_{t+1} - \mathbf{y}_t < x)$			
$x\downarrow$	Data	$N(0, 0.43^2)$		
0.05	0.42	0.10		
0.10	0.63	0.20		
0.20	0.79	0.39		
0.50	0.90	0.80		
1.00	0.96	0.99		

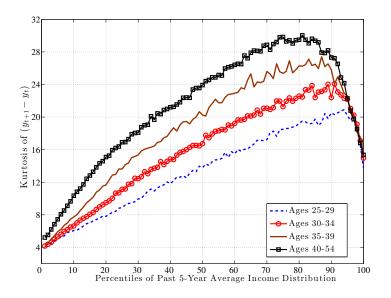
II.C DISTRIBUTION OF INCOME CHANGES

	$Prob(y_{t+1} - y_t < x)$			
$x\downarrow$	Data	$N(0, 0.43^2)$		
0.05	0.42	0.10		
0.10	0.63	0.20		
0.20	0.79	0.39		
0.50	0.90	0.80		
1.00	0.96	0.99		







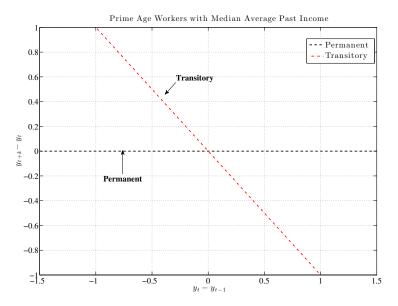


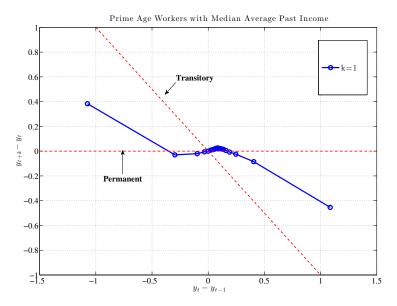
FOUR SETS OF EMPIRICAL FACTS

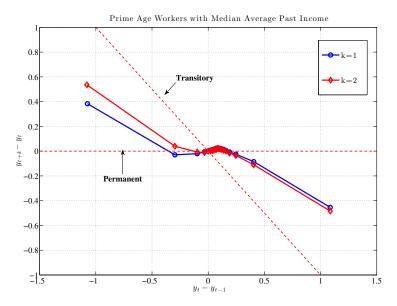
 $1. \ \mbox{Average income growth over the life cycle}$

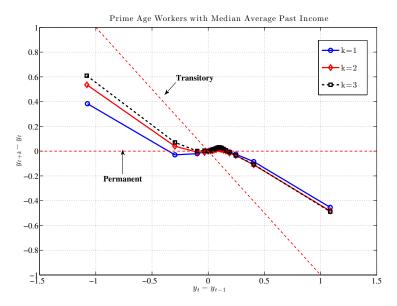
- 2. Cross-sectional moments of earnings growth: $y_{t+k} y_t$
- 3. Short- and long-run dynamics of income growth

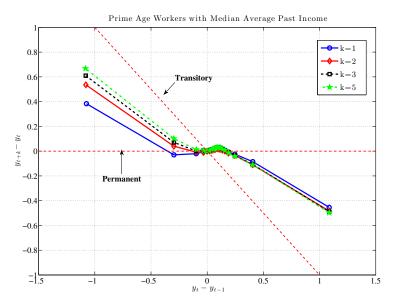
4.

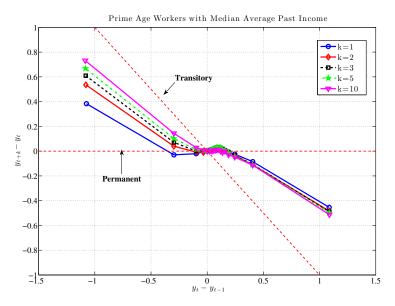


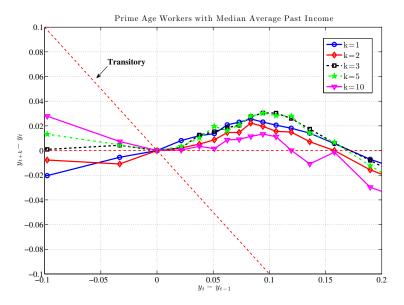


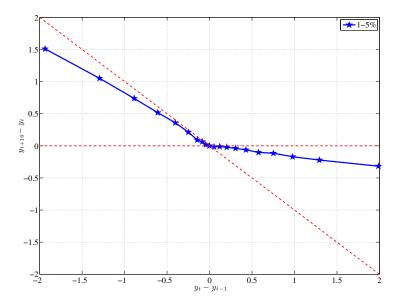


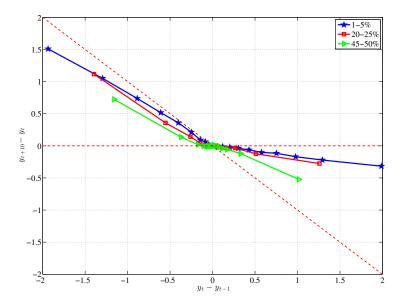


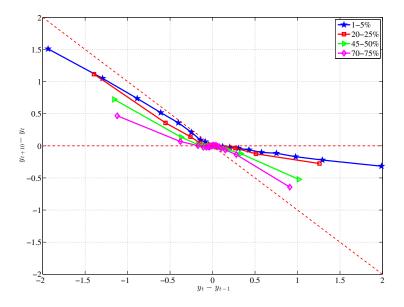


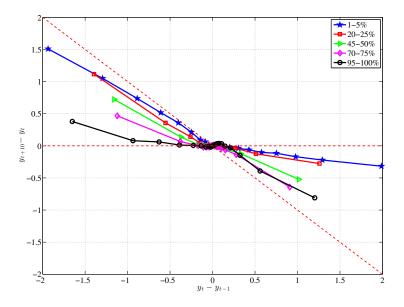












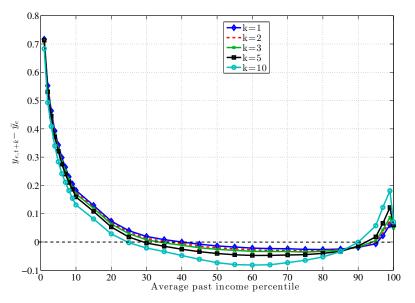
FOUR SETS OF EMPIRICAL FACTS

 $1. \ \mbox{Average income growth over the life cycle}$

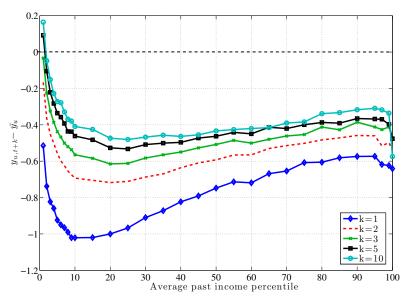
2. Cross-sectional moments of earnings growth: $y_{t+k} - y_t$

- 3. Short- and long-run dynamics of income growth
- 4. "Scarring" Effects of Long-Term Unemployment

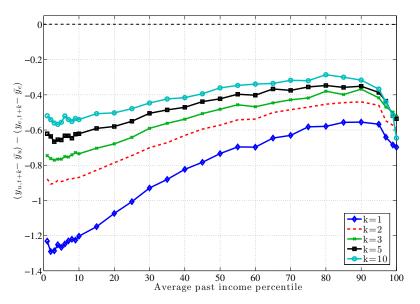
PRIME-AGE WORKERS: EMPLOYED



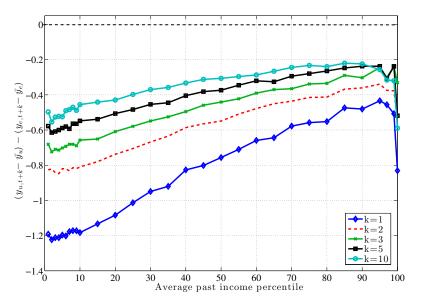
PRIME-AGE WORKERS: UNEMPLOYED



PRIME-AGE WORKERS: DIFF. IN DIFF.



YOUNG WORKERS: DIFF. IN DIFF.



ESTIMATION

ECONOMETRIC SPECIFICATION

$$y_t^i = \underbrace{\left[\alpha^i + \beta^i t + \gamma^i t^2\right]}_{\text{HIP}} + \underbrace{z_{1,t}^i + z_{2,t}^i}_{\text{mixture of AR(1)s}} + \underbrace{\varepsilon_t^i}_{\text{i.i.d.}}$$

$$z_{1,t}^{i} = \rho_{1} z_{1,t-1}^{i} + \eta_{1,t}^{i}$$
$$z_{2,t}^{i} = \rho_{2} x_{2,t-1}^{i} + \eta_{2,t}^{i}$$

where for j = 1, 2:

$$\eta_{jt}^{i} = \begin{cases} \mathbf{0} & \text{w.p.} \quad \mathbf{1} - p_{j} \\ \sim \mathcal{N}(\mathbf{0}, \sigma_{j}) & \text{w.p.} \quad p_{j} \end{cases}$$

and

$$\sigma_j(t, z_{t-1}) = \max\left(0, \sigma_{j,0} + a_j \times z_{t-1} + b_j \times t + c_j \times z_{t-1} \times t\right)$$

ESTIMATION RESULTS

Parameters	Group 1	Group 2	Group 2	
Fractions	0.10	0.80	0.10	
mean(α)	2.21	2.95	3.57	
mean(β)×100	4.31	9.44	12.27	
quadratic	-0.25	-0.25	-0.25	
σ_{lpha}	-0.74	0.00	0.63	
$\sigma_eta imes$ 100	1.02	1.35	0.68	
$\sigma_{lphaeta}$	-0.02	-0.41	0.21	
p_1		0.11		
p_2		0.77		
$ ho_1$	0.25			
ρ_2	0.54			
σ_1	$1.07 + 0.65z_{t-1} + 0.32t + 0.148tz_{t-1}$			
σ_2	$0.07 - 0.15z_{t-1} - 0.15t - 0.21tz_{t-1}$			
σ_ϵ	0.03			

WHAT TO USE IN CALIBRATION?

- These estimated processes are complex and richly parameterized.
 - How to use them for calibration?
- We intend to construct Markov transition matrices that summarize these processes.
- Civale-Guvenen-Stefanides (2013) explore how to do this for processes with excess kurtosis and large skewness.
 - Results to so far quite encouraging.

WHAT TO USE IN CALIBRATION?

- These estimated processes are complex and richly parameterized.
 - How to use them for calibration?
- We intend to construct Markov transition matrices that summarize these processes.
- Civale-Guvenen-Stefanides (2013) explore how to do this for processes with excess kurtosis and large skewness.
 - Results to so far quite encouraging.

WHAT TO USE IN CALIBRATION?

- These estimated processes are complex and richly parameterized.
 - How to use them for calibration?
- We intend to construct Markov transition matrices that summarize these processes.
- Civale-Guvenen-Stefanides (2013) explore how to do this for processes with excess kurtosis and large skewness.
 - Results to so far quite encouraging.

- Within-job earnings changes are small.
 - Every once in a while: find a better job or lose the job.
- Job mobility declines with age and wage.
 - Kurtosis goes up with age and wage
 - Variance of income changes decline with age and wage
- Skewness: Job losses contribute to the left tail.
 - Larger left tail for older people and for high wage people.
- These insights are mostly missed in income dynamics literature.

- Within-job earnings changes are small.
 - Every once in a while: find a better job or lose the job.
- Job mobility declines with age and wage.
 - Kurtosis goes up with age and wage
 - Variance of income changes decline with age and wage
- Skewness: Job losses contribute to the left tail.
 - Larger left tail for older people and for high wage people.
- These insights are mostly missed in income dynamics literature.

- Within-job earnings changes are small.
 - Every once in a while: find a better job or lose the job.
- Job mobility declines with age and wage.
 - Kurtosis goes up with age and wage
 - Variance of income changes decline with age and wage
- Skewness: Job losses contribute to the left tail.
 - Larger left tail for older people and for high wage people.
- These insights are mostly missed in income dynamics literature.

- Within-job earnings changes are small.
 - Every once in a while: find a better job or lose the job.
- Job mobility declines with age and wage.
 - Kurtosis goes up with age and wage
 - Variance of income changes decline with age and wage
- Skewness: Job losses contribute to the left tail.
 - Larger left tail for older people and for high wage people.
- These insights are mostly missed in income dynamics literature.

Conclusions

- Striking new regularities and patterns in individual earnings.
- Existing specifications do not capture these salient features of the data.
- We propose a richer specification that captures many of these patterns.
- Excess kurtosis and mixture of AR(1)s can explain an important puzzle in the CME literature.
 - Ongoing research (Guvenen-Tonetti aims to show this more rigorously.)
- New benchmarks and targets for calibration.

Conclusions

- Striking new regularities and patterns in individual earnings.
- Existing specifications do not capture these salient features of the data.
- We propose a richer specification that captures many of these patterns.
- Excess kurtosis and mixture of AR(1)s can explain an important puzzle in the CME literature.
 - Ongoing research (Guvenen-Tonetti aims to show this more rigorously.)
- New benchmarks and targets for calibration.

Conclusions

- Striking new regularities and patterns in individual earnings.
- Existing specifications do not capture these salient features of the data.
- We propose a richer specification that captures many of these patterns.
- Excess kurtosis and mixture of AR(1)s can explain an important puzzle in the CME literature.
 - Ongoing research (Guvenen-Tonetti aims to show this more rigorously.)
- New benchmarks and targets for calibration.

Conclusions

- Striking new regularities and patterns in individual earnings.
- Existing specifications do not capture these salient features of the data.
- We propose a richer specification that captures many of these patterns.
- Excess kurtosis and mixture of AR(1)s can explain an important puzzle in the CME literature.
 - Ongoing research (Guvenen-Tonetti aims to show this more rigorously.)
- New benchmarks and targets for calibration.

Conclusions

- Striking new regularities and patterns in individual earnings.
- Existing specifications do not capture these salient features of the data.
- We propose a richer specification that captures many of these patterns.
- Excess kurtosis and mixture of AR(1)s can explain an important puzzle in the CME literature.
 - Ongoing research (Guvenen-Tonetti aims to show this more rigorously.)
- New benchmarks and targets for calibration.