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Earnings Dynamics: Open Questions

1. How big are earnings shocks?

2. How persistent are they?

• Do positive and negative shocks have similar persistence?

3. How do the properties of shocks vary over the life cycle?

• e.g., standard deviation, skewness, kurtosis, etc.

4. Are shocks log normally distributed? How about higher
order moments?
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2. Employ covariance matrix estimation (CME), developed for
a data-constrained environment

This paper:

1. Large and clean administrative data set

• as many as 5,000,000 individuals per year.

2. Move beyond CME and target economically significant
moments.
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Data: SSA Master Earnings File

• Representative sample of US males covering 34 years:
1978 to 2011

• Salary and wage workers (from W2 forms)

• Individuals aged 25–60

• Key Advantages:

• Very large sample size (200+ million observations)

• No survey response error

• No sample attrition

• No top-coding
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Moving Beyond the Covariance Matrix

• CME method was developed for a severely data-
constrained environment.

• Not a constraint here.

• One problem with CME is that selecting among rejected
models is very hard:

• moments that are missed do not have clear economic
interpretations.

• Also ignores higher order moments, which we find to be
very important.
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Uses a unique, confidential, and very large administrative
dataset to:

1. Document new empirical facts on life cycle earnings
dynamics

2. Estimate lifecycle labor income risk

• by matching economically important moments (as opposed
to the “covariance matrix of income residuals”)

3. Provide a reliable “user’s guide” for earnings process
specifications.



Introduction New Empirical Facts Estimation Conclusions

This Paper

Uses a unique, confidential, and very large administrative
dataset to:

1. Document new empirical facts on life cycle earnings
dynamics

2. Estimate lifecycle labor income risk

• by matching economically important moments (as opposed
to the “covariance matrix of income residuals”)

3. Provide a reliable “user’s guide” for earnings process
specifications.



Introduction New Empirical Facts Estimation Conclusions

This Paper

Uses a unique, confidential, and very large administrative
dataset to:

1. Document new empirical facts on life cycle earnings
dynamics

2. Estimate lifecycle labor income risk

• by matching economically important moments (as opposed
to the “covariance matrix of income residuals”)

3. Provide a reliable “user’s guide” for earnings process
specifications.



Introduction New Empirical Facts Estimation Conclusions

This Paper

Uses a unique, confidential, and very large administrative
dataset to:

1. Document new empirical facts on life cycle earnings
dynamics

2. Estimate lifecycle labor income risk

• by matching economically important moments (as opposed
to the “covariance matrix of income residuals”)

3. Provide a reliable “user’s guide” for earnings process
specifications.



NEW EMPIRICAL FACTS



Introduction New Empirical Facts Estimation Conclusions

Four Sets of Empirical Facts

1. Average income growth over the life cycle

2. Cross-sectional moments of earnings growth

3. Short- and long-run dynamics of income growth

4. Scarring Effects of Long-Term Unemployment

5. Distribution of Lifetime Income (skip today)



Introduction New Empirical Facts Estimation Conclusions

Four Sets of Empirical Facts

1. Average income growth over the life cycle

2. Cross-sectional moments of earnings growth

3. Short- and long-run dynamics of income growth

4. Scarring Effects of Long-Term Unemployment

5. Distribution of Lifetime Income (skip today)



Introduction New Empirical Facts Estimation Conclusions

Four Sets of Empirical Facts

1. Average income growth over the life cycle

2. Cross-sectional moments of earnings growth

3. Short- and long-run dynamics of income growth

4. Scarring Effects of Long-Term Unemployment

5. Distribution of Lifetime Income (skip today)



Introduction New Empirical Facts Estimation Conclusions

Four Sets of Empirical Facts

1. Average income growth over the life cycle

2. Cross-sectional moments of earnings growth

3. Short- and long-run dynamics of income growth

4. Scarring Effects of Long-Term Unemployment

5. Distribution of Lifetime Income (skip today)



Introduction New Empirical Facts Estimation Conclusions

Four Sets of Empirical Facts

1. Average Income growth over the life cycle

2. Distribution of earnings changes

3. Dynamics of income changes (will omit today)

4. Scarring Effects of Long-Term Unemployment
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I. Income Growth Over Life Cycle
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Four Sets of Empirical Facts

1. Income growth over the life cycle

2. Cross-sectional moments of earnings growth: y

t+k

� y

t

3. Dynamics of income changes

4. Scarring Effects of Long-Term Unemployment
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II.a Standard Deviation of y
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II.b Skewness of y
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II.c Histogram of y
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II.c Kurtosis of y
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Impulse Response Functions
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Impulse Response Functions
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Asymmetric Mean Reversion
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Four Sets of Empirical Facts

1. Average income growth over the life cycle

2. Cross-sectional moments of earnings growth: y

t+k

� y

t

3. Short- and long-run dynamics of income growth

4. “Scarring” Effects of Long-Term Unemployment
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Prime-Age Workers: Employed
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Prime-Age Workers: Unemployed
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ȳ
u

k=1
k=2
k=3
k=5
k=10



Introduction New Empirical Facts Estimation Conclusions

Prime-Age Workers: Diff. in Diff.
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Young Workers: Diff. in Diff.
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Econometric Specification
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Estimation Results

Parameters Group 1 Group 2 Group 2
Fractions 0.10 0.80 0.10
mean(↵) 2.21 2.95 3.57
mean(�)⇥100 4.31 9.44 12.27
quadratic –0.25 –0.25 –0.25
�↵ -0.74 0.00 0.63
�� ⇥ 100 1.02 1.35 0.68
�↵� –0.02 –0.41 0.21
p1 0.11
p2 0.77
⇢1 0.25
⇢2 0.54
�1 1.07 + 0.65z

t�1 + 0.32t + 0.148tz

t�1
�2 0.07 � 0.15z

t�1 � 0.15t � 0.21tz

t�1
�✏ 0.03
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What to Use in Calibration?

• These estimated processes are complex and richly
parameterized.

• How to use them for calibration?

• We intend to construct Markov transition matrices that
summarize these processes.

• Civale-Guvenen-Stefanides (2013) explore how to do this
for processes with excess kurtosis and large skewness.

• Results to so far quite encouraging.
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A Structural Interpretation

• Within-job earnings changes are small.
• Every once in a while: find a better job or lose the job.

• Job mobility declines with age and wage.

• Kurtosis goes up with age and wage

• Variance of income changes decline with age and wage

• Skewness: Job losses contribute to the left tail.

• Larger left tail for older people and for high wage people.

• These insights are mostly missed in income dynamics
literature.



Introduction New Empirical Facts Estimation Conclusions

A Structural Interpretation

• Within-job earnings changes are small.
• Every once in a while: find a better job or lose the job.

• Job mobility declines with age and wage.

• Kurtosis goes up with age and wage

• Variance of income changes decline with age and wage

• Skewness: Job losses contribute to the left tail.

• Larger left tail for older people and for high wage people.

• These insights are mostly missed in income dynamics
literature.



Introduction New Empirical Facts Estimation Conclusions

A Structural Interpretation

• Within-job earnings changes are small.
• Every once in a while: find a better job or lose the job.

• Job mobility declines with age and wage.

• Kurtosis goes up with age and wage

• Variance of income changes decline with age and wage

• Skewness: Job losses contribute to the left tail.

• Larger left tail for older people and for high wage people.

• These insights are mostly missed in income dynamics
literature.



Introduction New Empirical Facts Estimation Conclusions

A Structural Interpretation

• Within-job earnings changes are small.
• Every once in a while: find a better job or lose the job.

• Job mobility declines with age and wage.

• Kurtosis goes up with age and wage

• Variance of income changes decline with age and wage

• Skewness: Job losses contribute to the left tail.

• Larger left tail for older people and for high wage people.

• These insights are mostly missed in income dynamics
literature.



Introduction New Empirical Facts Estimation Conclusions

Conclusions

• Striking new regularities and patterns in individual
earnings.

• Existing specifications do not capture these salient
features of the data.

• We propose a richer specification that captures many of
these patterns.

• Excess kurtosis and mixture of AR(1)s can explain an
important puzzle in the CME literature.

• Ongoing research (Guvenen-Tonetti aims to show this more
rigorously.)

• New benchmarks and targets for calibration.
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