Understanding Earnings Dynamics: Identifying and Estimating the Changing Roles of Unobserved Ability, Permanent and Transitory Shocks

> Lance Lochner (University of Western Ontario) Youngki Shin (University of Western Ontario)

> > June 2014

ヘロト 人間 ト ヘヨト ヘヨト

Role of Unobserved Ability/Skills

- There is considerable interest in the evolution of inequality and the returns to ability/skill over time
- Widespread agreement that returns to observed skills (education, experience) have risen since the early 1980s
- Less agreement on role of unobserved skills
 - Autor, Katz and Kearney (2008) vs. Card & DiNardo (2002), Lemieux (2006)
- More generally, there is interest in understanding the factors driving the evolution of residual inequality

ヘロト ヘアト ヘビト ヘビト

Earnings and Weekly Wage Inequality in the US

Source: 1970-2008 PSID

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Residuals and Unobserved Ability/Skill

- CPS-based literature interprets all changes in residual inequality as changes in the 'pricing' of unobserved skills
 - e.g., Katz & Murphy (1992), Juhn, Murphy & Pierce (1993), Autor, Katz & Kearney (2008)
 - increased residual inequality reflects an increase in the 'returns' to unobserved skill
- Along with increase in returns to observed skill, this literature has motivated theories of SBTC (e.g. Acemoglu 1999, Caselli 1999, Galor & Moav 2000, Violante 2002)
- Changes in institutional factors and minimum wages may also be important (Card & DiNardo 2002, Lemieux 2006)
- Most recently, Acemoglu & Autor (2011) and Autor & Dorn (2012) argue that mechanization of routine tasks has led to polarization of skill demand

ヘロン ヘアン ヘビン ヘビン

Interquantile Comparisons for Log Earnings Residuals, 1970-2008 PSID

イロト 不得 とくほ とくほ とうほ

What about Idiosyncratic Shocks?

- CPS-based literature largely ignores parallel research on earnings dynamics using PSID
 - labor: Gottschalk & Moffitt (1994, 2002, 2009, 2012), Haider (2001), Meghir & Pistaferri (2004), Robin & Bonhomme (2010)
 - macro: Heathcote, Perri & Violante (2010), Heathcote, Storesletten & Violante (2010)
- Decomposes variance of log wages/earnings residuals into permanent and transitory shocks over time
- Important for understanding consumption and savings behavior/inequality
- Estimates suggest similar increases in variance of both permanent and transitory shocks
- Transitory component unlikely to be related to unobs. skill
- Rarely account for changes in pricing of unobs. skills

Our Goal: Incorporating All Three Components

We consider a general log earnings/wage residual decomposition:

$$W_{it} = \mu_t(\theta_i) + \kappa_{i,t} + \nu_{i,t}$$

$$\kappa_{i,t} = \kappa_{i,t-1} + \eta_{i,t}$$

$$\nu_{i,t} = \xi_{i,t} + \beta_{1t}\xi_{i,t-1} + \beta_{2t}\xi_{i,t-2} + \dots + \beta_{qt}\xi_{i,t-q}$$

- 'Unobserved Ability' literature effectively ignores any changes in distributions of κ_{i,t} and ν_{i,t}
- 'Earnings Dynamics' literature effectively ignores μ_t(θ_i) or assumes μ_t(θ_i) is time invariant

Earnings Components

$$W_{it} = \mu_t(\theta_i) + \kappa_{i,t} + \nu_{i,t}$$

$$\kappa_{i,t} = \kappa_{i,t-1} + \eta_{i,t}$$

$$\nu_{i,t} = \xi_{i,t} + \beta_{1t}\xi_{i,t-1} + \beta_{2t}\xi_{i,t-2} + \dots + \beta_{qt}\xi_{i,t-q}$$

- μ_t(·) reflects the pricing of unobserved skills θ, which may change over time due to technological change or institutional factors (e.g. unions, minimum wage)
- η_t reflects permanent idiosyncratic shocks like job displacement, switching employers, disability
- ν_t reflects potentially persistent but transitory shocks like temporary illness, family disruption, temporary demand shocks for employers

Changing Skill Prices vs. Shocks

- Changing skill prices affect earnings of similar individuals in the same way – strong co-movements over time
- Idiosyncratic shocks can move the wages/earnings of similar workers in very different directions
- We think of skill pricing functions as relatively slow moving based on supply/demand and institutional factors (e.g. unions, minimum wages)
 - likely to be more predictable
- Predictable changes in skill prices should have weak effects on within-cohort consumption inequality but should increase inequality across cohorts
- Increased variance of permanent shocks should increase within- and across-cohort consumption inequality
- Skill prices and variability of shocks have different implications for precautionary savings

What We Do – Outline

- We first consider conditions required for nonparametric identification
- Consider a moment-based approach for estimation
 - briefly discuss necessary conditions for identification with polynomial $\mu_t(\cdot)$ functions
 - provide Minimum Distance estimates assuming $\mu_t(\cdot)$ are linear/cubic polynomials
 - focus on log earnings residuals for men in PSID, 1970-2008

Nonparametric Identification: Simple Case

Consider non-parametric identification, beginning with a simple instructive case:

$$W_{it} = \mu_t(\theta_i) + \varepsilon_{it}$$

- ε_{it} are independent over time
- $\mu_t(\cdot)$ are strictly increasing

Some normalizations:

- $E(\theta) = E(\varepsilon_t) = 0$
- $\mu_1(\theta) = \theta$

Problem is very similar to that of measurement error literature (e.g. Hu and Schennach 2008)

・ロト ・ 理 ト ・ ヨ ト ・

Some Intuition on Identifying $\mu_t(\theta)$ and $f_{\theta}(\cdot)$

- If $\mu_t(\theta) = m_{0,t} + m_{1,t}\theta$, then the problem is just like a standard measurement error problem with multiple measurements
- If $W_1 = \theta$, we could just regress W_t on W_1 to identify $\mu_t(\cdot)$
- Due to ε_1 , we would get attenuation bias
- Can use other $W_{t'}$ as instruments in a regression of W_t on W_1 to identify $\mu_t(\cdot)$
- Can then identify σ_{θ}^2
- General case is a bit like nonparametric IV in context of measurement error

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Assumption 1

The following conditions hold for T = 3:

(i) The joint density of θ , W_1 , W_2 , and W_3 is bounded and continuous, and so are all their marginal and conditional densities.

(ii) W_1 , W_2 , and W_3 are mutually independent conditional on θ .

(iii) $f_{W_1|W_2}(w_1|w_2)$ and $f_{\theta|W_1}(\theta|w_1)$ form a bounded complete family of distributions indexed by W_2 and W_1 , respectively. • Definition

(iv) For all $\bar{\theta}, \tilde{\theta} \in \Theta$, the set $\{w_3 : f_{W_3|\theta}(w_3|\bar{\theta}) \neq f_{W_3|\theta}(w_3|\tilde{\theta})\}$ has positive probability whenever $\bar{\theta} \neq \tilde{\theta}$.

(v) We normalize $\mu_1(\theta) = \theta$ and $E[\varepsilon_t|\theta] = 0$ for all t.

ヘロト ヘアト ヘビト ヘビト

ъ

Lemma 1: Identification in the Simple Case

Lemma 1

Under Assumption 1, $f_{\theta}(\cdot), f_{\varepsilon_t}(\cdot)$, and $\mu_t(\cdot)$ are identified $\forall t$.

Proof:

- Thm 1 of Hu and Schennach (2008) gives identification of $f_{W_1|\theta}(\cdot|\cdot), f_{W_2|\theta}(\cdot|\cdot)$, and $f_{W_3,\theta}(\cdot,\cdot)$ from $f_{W_1,W_2,W_3}(\cdot,\cdot,\cdot)$
- *f*_θ(·) can be recovered from *f*_{W₃,θ}(·, ·) by integrating out *W*₃ (Cunha, Heckman and Schennach 2010)
- identify $\mu_2(\cdot)$ and $\mu_3(\cdot)$ from $E[W_t|\theta] = \mu_t(\theta)$ given $f_{W_t|\theta}(\cdot|\cdot)$
- $f_{\varepsilon_t}(\cdot)$ is identified from $f_{\varepsilon_t}(\varepsilon) = f_{W_t|\theta}(\mu_t(\theta) + \varepsilon)$, since $\mu_t(\cdot)$ and $f_{W_t|\theta}(\cdot|\cdot)$ are already known.

Nonparametric Identification Moment-Based Approach

Nonparametric Identification: Serially Correlated Shocks

Now, consider heteroskedastic permanent shocks and an MA(1) process for ε_{it} :

$$W_{it} = \mu_t(\theta_i) + \kappa_{i,t} + \nu_{i,t}$$

$$\kappa_{i,t} = \kappa_{i,t-1} + \eta_{i,t}$$

$$\nu_{i,t} = \xi_{i,t} + \beta_t \xi_{i,t-1}$$

• Allow $\eta_{i,t} = \sigma_t(\theta_i)\zeta_{i,t}$

- Identification for most parameters/densities/functions requires T ≥ 9 (we focus on T = 9)
- Use differences to eliminate correlations in shocks

ヘロア 人間 アメヨア 人口 ア

Generalizing Lemma 1

Taking first differences and looking at observations far enough apart, we can get back to independence and apply Lemma 1 (or something similar):

$$W_1 = \theta + \varepsilon_1 = \theta + \{\eta_1 + \nu_1\}$$

$$\Delta W_4 = \Delta \mu_4(\theta) + \Delta \varepsilon_4 = \Delta \mu_4(\theta) + \{\eta_4 + \Delta \nu_4\}$$

$$\Delta W_7 = \Delta \mu_7(\theta) + \Delta \varepsilon_7 = \Delta \mu_7(\theta) + \{\eta_7 + \Delta \nu_7\}$$

- repeat for other triplets $(W_2, \Delta W_5, \Delta W_8)$ and $(W_3, \Delta W_6, \Delta W_9)$ to identify all $\mu_t(\cdot)$
- identification now comes from relationship between earnings and future earnings changes

・ロット (雪) () () () ()

Assumption 2

The following conditions hold for T = 9:

(i) The joint density of θ , W_1 , W_2 , W_3 , ΔW_4 , ..., ΔW_9 is bounded and continuous, and so are all their marginal and conditional densities. $f_{\theta}(\cdot)$ is non-vanishing on \mathbb{R} .

(ii) Unobserved components ζ_t , ξ_t , and θ are mutually independent for all t = 1, ..., 9.

(iii) $f_{W_t|\Delta W_{t+3}}(w_t|\Delta w_{t+3})$ and $f_{\theta|W_t}(\theta|w_t)$ form a bounded complete family of distributions indexed by ΔW_{t+3} and W_t , respectively, for t = 1, 2, 3.

(iv) For all $\bar{\theta}, \tilde{\theta} \in \Theta$ and t = 7, 8, 9, the set $\{w : f_{\Delta W_t | \theta}(w | \bar{\theta}) \neq f_{\Delta W_t | \theta}(w | \bar{\theta})\}$ has positive probability whenever $\bar{\theta} \neq \tilde{\theta}$.

(v) We impose the following normalizations: $\kappa_0 = \xi_0 = 0$, $\mu_1(\theta) = \theta$, $E[\zeta_t] = E[\xi_t] = 0$, $E[\zeta_t^2] = 1$, and $\sigma_t(\cdot) > 0$ for all t.

(vi) For all t, we assume the Carleman's condition holds for ζ_t and ξ_t .

Nonparametric Identification Moment-Based Approach

Theorem 1: Identification with Serially Correlated Errors

Theorem 1

Under Assumption 2, $f_{\theta}(\cdot)$, $\{f_{\eta_t}(\cdot), f_{\xi_t}(\cdot), \beta_t\}_{t=1}^7$, and $\{\mu_t(\cdot)\}_{t=1}^9$ are identified.

Proof has three steps:

- Identify $f_{\theta}(\cdot)$ and $\mu_t(\cdot)$ for all t using Lemma 1. Details
- Identify $E[\xi_t^2]$, β_t , and $\sigma_t(\cdot)$ for t = 1, ..., 7 using various second moments.
- Identify $f_{\eta_t}(\cdot)$ and $f_{\xi_t}(\cdot)$ for t = 1, ..., 7.

イロン 不得 とくほ とくほう 一日

Some General Comments on Identification

- For $T \ge 9$, this general strategy can be used to identify $f_{\theta}(\cdot), \{\mu_t(\cdot)\}_{t=1}^T$ and $\{f_{\eta_t}(\cdot), f_{\xi_t}(\cdot), \beta_t\}_{t=1}^{T-2}$
- If shocks are all homoskedastic, cannot have flat regions in $\Delta\mu_t(\cdot)$ for t=7,8,9
- Identification approach rules out an autoregressive process where transitory shocks never die out
- Can handle arbitrarily long MA(q) process, but may require a long panel
 - MA(q) requires $T \ge 6 + 3q$ time periods
 - can only identify shock process through T q 1

イロト 不得 とくほ とくほ とうほ

Moment-Based Approach

Now, consider a moment-based approach

- Assume $\mu_t(\theta) = m_{0,t} + m_{1,t}\theta + \ldots + m_{p,t}\theta^p$
- Normalize $\mu_1(\theta) = \theta$ and $E[\mu_t(\theta)] = 0$ for t = 2, ..., T
- Assume $f_{\xi_t}(\cdot)$ and $f_{\eta_t}(\cdot)$ are time-specific
- Assume θ , η_t and ξ_t are mutually independent with η_t and ξ_t independent over time
- Normalize $E[\theta] = E[\eta_t] = E[\xi_t] = 0$

Using Variances & Covariances

Assuming shocks begin at age a = 1, we have variances:

$$E[W_{i,a,t}^2|a,t] = \sum_{j=0}^p \sum_{j'=0}^p m_{j,t}m_{j',t}E[\theta^{j+j'}] + \sum_{j=0}^{a-1} \sigma_{\eta_{t-j}}^2 + \sigma_{\xi_t}^2 + \sum_{j=1}^{\min\{q,a-1\}} \beta_{j,t}^2 \sigma_{\xi_{t-j}}^2$$

and covariances (for $l \ge 1$):

$$E[W_{i,a,t}W_{i,a+l,t+l}|a,t,l] = \sum_{j=0}^{p} \sum_{j'=0}^{p} m_{j,t}m_{j',t+l}E[\theta^{j+j'}] + \sum_{j=0}^{a-1} \sigma_{\eta_{t-j}}^{2} + E(\nu_{i,a,t}\nu_{i,a+l,t+l})$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Number of Moments and Parameters for MA(1)

Consider the number of moments & parameters for one cohort using variances & covariances

Number of parameters:

- 2p-1 parameters for $E[\theta^2],...,E[\theta^{2p-1}],E[\theta^{2p}]$
- (p+1)(T-1) parameters for $\mu_t(\theta)$ polynomials, t = 2, ..., T
- 2(T-2) parameters for $\sigma_{\eta_t}^2$ and $\sigma_{\xi_t}^2$, t = 1, ..., T-2
- T-3 parameters for β_t , t = 2, ..., T-2
- Total number of parameters: (4+p)T + p 9

Number of moments:

- $\frac{T(T+1)}{2}$ variance/covariance terms
- T-1 moments coming from $E[\mu_t(\theta)] = 0, t = 2, ..., T$
- Total moments: $\frac{T(T+1)}{2} + T 1$

・ロット (雪) (山) (山)

Identification

Necessary condition for identification: $T \ge 3$ and $p \le \frac{T^2 - 5T + 16}{2(T+1)}$

- Cubic $\mu_t(\cdot)$ requires $T \ge 10$
- Adding higher residual moments can be helpful
- Higher moments necessary to identify higher moments of shock distributions $f_{\eta_t}(\cdot)$ and $f_{\xi_t}(\cdot)$

Multiple Cohorts

- With changing distribution of cohorts over time (aging in and out of panel), it is important to account for the fact that older cohorts have accumulated a longer history of shocks
 - we assume shocks start at age 20
- Additional cohorts can aid in identification, since $\mu_t(\cdot)$ does not vary across cohorts

ヘロト ヘアト ヘビト ヘビト

PSID Data MD Estimation Results

PSID Data: Overview

- PSID is a longitudinal survey of a representative sample of US individuals and their families
- Collected annually through 1997, biennially starting in 1999
- We use data from interview years 1971 through 2009
- Earnings are collected for the previous year, so data cover calendar years 1970-2008
- Earnings: household head's total wages and salaries (excluding farm and business income)
- Earnings reported in 1996 dollars using CPI-U-RS

PSID Data MD Estimation Results

Sample Restrictions

- Core (SRC) sample with nonzero weights
 - exclude oversamples (SEO, Latino) and nonsample persons
- Male heads of households
- Ages 30-59
- Positive annual wages and weeks worked
- Non-students
- Trim top and bottom 1% of wages within each age-year cells (ten-year age group used)
- Resulting data set has 3,302 men and 33,207 person-year observations

PSID Data MD Estimation Results

Sample Statistics

- Race: 92% White, 6% black, 1% hispanic
- Age: mean age is 47
- Educational Attainment

Education (years)	Percent	
Elementary (1-5)	1.2	
Middle (6-8)	5.0	
Some High (9-11)	9.9	
Completed High (12)	33.7	
Some College (13-15)	20.0	
Completed College (16)	20.6	
Advanced Degrees (17+)	9.8	

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

PSID Data MD Estimation Results

Obtaining Residuals

- We focus on the distribution of residual earnings, controlling for differences in education, race, and age
- Run a cross-sectional regression of log earnings for each year on
 - age dummies
 - race dummies
 - education dummies
 - race dummies × cubic polynomial in age
 - education dummies × cubic polynomial in age

ヘロン 人間 とくほ とくほ とう

1

PSID Data MD Estimation Results

Residual Earnings Inequality in the US, 1970-2008

PSID Data MD Estimation Results

Moment-Based Estimation

- Assume $\beta_{j,t} = \beta_j$ for all j and t
- We assume $\sigma_{\eta_{\tau}}^2 = \sigma_{\eta_0}^2$ and $\sigma_{\xi_{\tau}}^2 = \sigma_{\xi_0}^2$ for all τ years prior to our data
 - other assumptions yield similar results
- Assume homoskedastic shocks for most of the analysis
- Use minimum distance for estimation
 - aggregate into three age categories for variance/covariance moments
 - weight moments by share of observations used for that moment

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Decomposition

We focus on decomposing variance of earnings residuals into three components:

• pricing of unobserved skills: $Var[\mu_t(\theta)]$

• permanent shocks:
$$\sigma_{\kappa_t}^2 = \sum_{j=0}^{a-1} \sigma_{\eta_t-j}^2$$

• transitory shocks:
$$\sigma_{\nu_t}^2 = \sigma_{\xi_t}^2 + \sum_{j=1}^q \beta_{jt}^2 \sigma_{\xi_{t-j}}^2$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

PSID Data MD Estimation Results

Estimation with linear $\mu_t(\theta)$

We begin by assuming $\mu_t(\theta)$ is linear

- only use variances & covariances in estimation
- begin by assuming distribution of θ is the same across cohorts, but explore changes across cohorts later

ヘロン 人間 とくほ とくほ とう

1

 Interference
 PSID Data

 Data & Estimation
 MD Estimation Results

MD estimation

	Constant μ_t	Time-Varying $\mu_t(\cdot)$			
	MA(3)	MA(1)	MA(2)	MA(3)	MA(5)
Min. Obj. Fun.	168.27	130.73	124.16	121.10	116.93
0	0.000	0.007	0.004	0.000	0.000
eta_1	0.326	0.297	0.281	0.288	0.299
	(0.027)	(0.033)	(0.026)	(0.027)	(0.027)
β_2	0.222		0.186	0.172	0.194
	(0.025)		(0.025)	(0.021)	(0.020)
β_3	0.246		•	0.141	0.137
, 0	(0.034)			(0.025)	(0.022)
β_4					0.126
					(0.020)
β_5		•			0.084
					(0.024)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

PSID Data MD Estimation Results

Variance of θ and shocks

MA(3) model with time-varying $\mu_t(\theta)$

- イヨト イヨト - ヨ

< < >> < <</>

PSID Data MD Estimation Results

Variance Decomposition

MA(3) model with time-varying $\mu_t(\theta)$

イロン 不得 とくほ とくほう 一日

Identification Issues PSID Data Data & Estimation MD Estimation Results

Comparison with time-invariant μ model

MA(3) shocks with time-varying vs. time-invariant $\mu_t(\theta)$

Time-Varying $\mu_t(\theta)$

Time-Invariant $\mu(\theta)$

Lochner & Shin Understanding Earnings Dynamics

PSID Data MD Estimation Results

Other Transitory Processes

MA(1), MA(5), and ARMA(1,1) shocks with time-varying $\mu_t(\theta)$

MA(1)

MA(5)

ARMA(1,1)

ヘロン 人間 とくほ とくほ とう

Identification Issues PSID Data Data & Estimation MD Estimation Results

η_t as Skill Shocks

Suppose we interpret η_t as skill shocks so

$$W_{it} = \mu_t(\theta_i + \kappa_{it}) + \nu_{it}$$

where we assume linear $\mu_t(\cdot)$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Identification Issues PSID Data Data & Estimation MD Estimation Results

η_t as Skill Shocks

Suppose we interpret η_t as skill shocks so

$$W_{it} = \mu_t(\theta_i + \kappa_{it}) + \nu_{it}$$

where we assume linear $\mu_t(\cdot)$

Lochner & Shin

Understanding Earnings Dynamics

Allowing for cohort differences in distribution of θ

- Shifts in mean of θ are absorbed in age and time effects before obtaining residuals
- We examine whether the variance of θ varies across cohorts
 - birth cohorts from 1911 to 1978
 - assume a cubic spline in year of birth with two interior knots

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Identification Issues PSID Data & Estimation MD Esti

MD Estimation Results

Cohort Differences in Variance of θ

Lochner & Shin Understanding Earnings Dynamics

イロト 不得 とくほ とくほ とう

PSID Data MD Estimation Results

Estimation with cubic $\mu_t(\theta)$

Now, assume

- $\mu_t(\theta)$ are time-varying cubic functions with $\mu_{1985}(\theta) = \theta$
- $f_{\theta}(\cdot)$ is a mixture of two normals (same for all cohorts)
- permanent and MA(3) transitory shocks

We now use all second- and third-order moments of log earnings residuals

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

PSID Data MD Estimation Results

Distribution of θ (1985)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

PSID Data MD Estimation Results

Estimated $\mu_t(\theta)$ functions

Lochner & Shin Understanding Earnings Dynamics

イロン 不得 とくほ とくほ とうほ

PSID Data MD Estimation Results

Estimated $\mu_t(\theta)$ functions

イロン 不得 とくほ とくほ とうほ

PSID Data MD Estimation Results

Variance Decomposition

Comparison with linear $\mu_t(\theta)$

linear $\mu_t(\theta)$

cubic $\mu_t(\theta)$

Lochner & Shin

Understanding Earnings Dynamics

PSID Data MD Estimation Results

Evolution of $\mu_t(\theta)$ distribution vs. residual distribution

Residuals

 $\mu_t(\theta)$

(E) < (E)</p>

PSID Data MD Estimation Results

Variances and Skewness Over Time

Variance

Skewness

・ロト ・ 理 ト ・ ヨ ト ・

3

Lochner & Shin Understanding Earnings Dynamics

Identification Issues PSID Data Data & Estimation MD Estimation Results

Heteroskedasticity in Permanent Shocks

Consider $\sigma_t(\theta) = s_{0,t} + s_{1,t}\theta$.

イロト 不得 とくほ とくほ とう

3

PSID Data MD Estimation Results

Summary & Conclusions

- We consider identification and estimation of a model with unobserved skill differences and time-varying
 - skill 'pricing' functions
 - permanent shocks
 - transitory shocks
- Identification
 - prove nonparametric identification
 - discuss identification for a moment-based approach
- Estimation
 - Minimum Distance estimation using second- and third-order residual moments
 - Use male log earnings residuals in PSID

ヘロン 人間 とくほ とくほ とう

1

PSID Data MD Estimation Results

Summary & Conclusions

- Results suggest that all components of earnings have played an important role since 1970
 - 'returns' to unobserved skill increased broadly in 1970s and early 1980s but fell in late 1980s/early 1990s
 - stronger decline in value of unobserved skill at bottom than top after 1995 (partial polarization)
 - variance of unobserved skills changed little over 1925-55 cohorts
 - variance of transitory shocks jumped in early 1980s and bounced around after
 - variance of permanent shocks rose consistently over 1980s and 1990s (especially among low ability)
- Inequality in unobserved skills evolves quite differently from overall residual inequality
 - accounting for idiosyncratic shocks is important for understanding role of unobserved skills

PSID Data MD Estimation Results

An Economic Explanation

A theory based on slow diffusion of skill-biased technology in frictional labor markets can be helpful (based on Violante 2002)

- introduction of skill-biased technology in 1970s
- quick diffusion to most high-skill workers
 - increase in $\mu'_t(\cdot)$ but not $\sigma^2_{\eta_t}$
- by mid-1980s, skill begins to diffuse more slowly to lower skilled workers
 - decrease in $\mu_t'(\cdot)$
- matching of low-skill workers to new technologies random due to market frictions
 - increase in $\sigma^2_{\eta_t}(\theta)$ for low ability workers
- rising σ²_{ηt} consistent with rising variance of wages paid across firms (e.g., Dunne et al. 2004, Barth et al. 2011)

프 🖌 🛪 프 🛌

PSID Data MD Estimation Results

Future Efforts

Estimate differences by education and/or race

- allow $f_{\theta}(\cdot)$ and $\mu_t(\theta)$ to vary by education/race
- what roles do changes in unobserved skill distributions and pricing play in earnings gaps?
- Move from modelling residuals to earnings/wages themselves
- Allow for multiple unobserved skills
- Examine implications for consumption inequality within and across cohorts over time

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

dentification IssuesPSID DataData & EstimationMD Estimation Results

Thanks

Lochner & Shin Understanding Earnings Dynamics

Bounded complete family of distributions

 $f_{\theta|W}(\theta|W)$ forms a bounded complete family of distributions indexed by W if $g(\theta) = 0$ is the only bounded function that solves:

$$\int g(\theta) f_{\theta|W}(\theta|W) d\theta = 0, \quad \forall W$$

- Standard assumption in nonparametric identification literature related to invertability of conditional expectation integral function
- E.g. violated if
 - $\theta \perp\!\!\!\perp W$, since $g(\theta) = \theta E(\theta)$ solves the equation above
 - $f_{\theta|W}$ is symmetric about 0 for all W, e.g. W only affects variance of θ

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Step 1: Details on identification of $\mu_2, \mu_3,...$

Consider the second subset of equations:

$$W_2 = \mu_2(\theta) + \varepsilon_2 = \theta_2 + \{\eta_1 + \eta_2 + \nu_2\}$$

$$\Delta W_5 = \Delta \mu_5(\theta) + \Delta \varepsilon_5 = g_5(\theta_2) + \{\eta_5 + \Delta \nu_5\}$$

$$\Delta W_8 = \Delta \mu_8(\theta) + \Delta \varepsilon_8 = g_8(\theta_2) + \{\eta_8 + \Delta \nu_8\}$$

where $g_t(\theta_2)$ is implicitly defined by $\Delta \mu_t(\theta) = g_t(\mu_2(\theta))$.

- Can identify $f_{\theta_2}(\cdot), g_5(\cdot)$, and $g_8(\cdot)$ using same approach
- Recover the function $\mu_2(\cdot)$ by $\mu_2(\theta) = F_{\theta_2}^{-1}(F_{\theta}(\theta))$
- Once we identify $\mu_2(\cdot)$, $\Delta\mu_5(\cdot)$ and $\Delta\mu_8(\cdot)$ are identified from $\Delta\mu_t(\theta) = g_t(\mu_2(\theta))$

▶ Back

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○