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Imputing a Panel of Consumption and Income

• Many important questions can only be answered with a panel of income

and consumption data

• The PSID is a panel that includes individual characteristics, income, and

food consumption

• The CEX is a repeated cross-section that contains individual

characteristics, food and total consumption

• Our paper imputes total consumption in the PSID using information from

the PSID and CEX
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Blundell, Pistaferri, and Preston (2006)

• Consider the food demand equation

ln Fitj = D′

itjβ + γ ln Citj + eitj

• Fitj is food consumption of agent i at time t in data set j

• Ditj is vector of agent i ’s characteristics at time t in data set j and some

aggregate variables

• Citj is total consumption of agent i at time t in data set j
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BPP Imputation

1 Using data in the CEX, estimate the food demand equation

ln Fitj = D′

itjβ + γ ln Citj + eitj

2 Imputed measure of consumption in the PSID is,

Ĉitp = exp

(
ln Fitp − D′

itpβ̂

γ̂

)
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Our Basic Idea

• Keep similar statistical model and innovate on imputation algorithm

• ‘Stack’ both data sets, Yt

• Parameters shared across data sets θ

• Treat total consumption for each individual at each time as a hidden
variable, grouped into Xt

◮ Dimension of X ≈ 25, 000 ⇒ very difficult sampling problem

The goal is to draw from p(θ,X1:T |Y1:T )
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Contributions

• Efficiently use information from both data sets to impute total
consumption in the PSID panel

◮ Efficiency gains from one step procedure

◮ Efficiency gains from likelihood based estimation

• Quantify uncertainty about imputation error

◮ Posterior distribution vs. point estimate

◮ Uncertainty matters: consumption inequality example

• Flexibility of methodology allows for gains from improved statistical
model

◮ Richer demand systems

◮ More data: aggregate and disaggregate

◮ Rich modelling of measurement error
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Motivation: Back of the Envelope Calculation I

1 BPP estimate γ̂ = 0.8503 with standard error = 0.1511

2 So one std around 0.8503 is ≈ (0.7,1)

3 Invert to get 1/γ̂ ∈ (1,1.42). Note 1/0.8503 = 1.17

4 Hence the imputed measure of consumption in the PSID is,

Ĉitp = exp
(

1.17(ln Fitp − D′

itpβ̂)
)

5 1 standard deviation (in γ) is

Ĉitp ∈
[
exp

(
1(ln Fitp − D′

itpβ̂)
)
, exp

(
1.42(ln Fitp − D′

itpβ̂)
)]

6 → 1 std band spans roughly Ĉitp ± 20%(≈ 1.42/1.17)

7 2 std is γ ∈ (0.5478,1.1522) or 1/γ̂ ∈ (0.85,1.83)
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Motivation:Back of the Envelope Calculation II

1 BPP actually include interaction terms in the food demand equation

ln Fitj = D′

itjβ + ln Citj(γ + H′

itjα) + eitj

2 Imputed measure of consumption in the PSID is,

Ĉitp = exp




ln Fitp − D′

itpβ̂

γ̂ + H′

itpα̂





3 Error in β̂ and α̂ → individual specific confidence interval size

4 What about correlation in (α̂, β̂, γ̂)?
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Model

fitx = D
′

itxβ + γc∗

itx + σf eitx

citx = c∗

itx + σcx vitx

fitp = D
′

itpβ + γc∗

itp + σf eitp

eitx , eitp, vitx ∼ N(0,1)

θ := {β, γ, σf , σcx}

X := {c∗

itx , c
∗

itp}

Y := {fitx , fitp,Ditx ,Ditp, citx}

We can obtain analytical expression for likelihood.
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Metropolis-Hastings

• Target: f (s)

• Want to be able to draw from f to characterize f when high dimensions

• Proposal: s′ ∼ q(s, ·), with density q(s, s′)

• Given chain is at some point sm = s, set sm+1 = s′ with probability

α(s, s′) = min
{

1,
f (s′)q(s′, s)
f (s)q(s, s′)

}

• M-H generates a Markov chain whose invariant distribution is the target

distribution
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What proposal to use?

• Most popular: Random-Walk

• Proposal: s′ ∼ N(s,Σ). Has density q(s, s′) = q(s′, s)

• Acceptance probability

α(s, s′) = min
{

1,
f (s′)

f (s)

}

• Does not work too well in high dimensions. Why?
◮ Random walk proposal does not take into account shape of target density

◮ Highly likely you “fall off a cliff” with the proposal

◮ Σ is of dimension n2

• Sampling challenges potentially why this approach is not popular.
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Rubin 1988 on Multiple Imputation

“Multiple imputations ideally should be drawn according to the following

general scheme. For each model being considered, the M imputations of the

missing values, Ymis, are M repetitions from the posterior predictive

distribution of Ymis, each repetition being an independent drawing of the

parameters and missing values under appropriate Bayesian models for the

data and the posited response mechanism.”
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Metropolis Adjusted Langevin Algorithm (MALA)

• Langevin SDE:

dS =
1
2
∇log(f (S))dt + dW

• This SDE has f (s) as its invariant distribution

• MALA uses a (Euler) discretization as a proposal distribution in the

Metropolis-Hastings Algorithm, i.e.,

St+1 = St +
h2

2
∇log(f (St)) + hǫt+1

• Thus, when S = {θ,X}

q((θ,X ), (·, ·)) = N((θ,X ) +
h2

2
∇log(p(θ,X |Y )), h2I)
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More on MALA

• Other enhancements

◮ Can have a constant or state-dependent preconditioning matrix, Λ(S)

St+1 = St +
h2

2
Λ(St )∇log(f (St )) + h

√
Λ(St )ǫt+1

◮ Truncate or further augment the drift term (formulas in paper)

St+1 = St +
h2

2
D(St ) + h

√
Λ(St )ǫt+1

• Theoretical out-performance of MALA relative to RWMH in high
dimensions.

◮ Performance depends on properties of target density

◮ MALA has a higher optimal acceptance rate than RWMH (0.574 vs 0.234)

◮ MALA explores posterior faster, “mixing time” is O(n1/3) vs O(n)

• For us 29 vs. 25,000

I now want to show you that this works and that it matters.
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Estimation using Simulated Data

• Specify priors

• Simulate data using known (C∗sim
itx ,C∗sim

itp , β, σf , σcx , γ)

• Use (Csim
itx , f sim

itx , f sim
itp ,Ditx ,Ditp) as a dataset and try to estimate

(C∗sim
itx ,C∗sim

itp , β, σf , σcx , γ)

• Chain length 20 million, keeping every 5,000th draw, 4,000 for inference
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Results on θ from Simulation Exercise

Table: Estimation Results for θ on Simulated Data

Parameter True Mean StDev 2.5% 97.5%

β6 0.0176 0.0153 0.0048 0.0062 0.0246

β16 -0.3930 -0.4282 0.1022 -0.6263 -0.2326

β23 0.0128 0.0070 0.0116 -0.0160 0.0294

β24 0.0507 0.0387 0.0075 0.0241 0.0530

σf 0.2340 0.2348 0.0019 0.2310 0.2386

σcx 0.0206 0.0374 0.0065 0.0259 0.0515

γ 0.8343 0.8200 0.0039 0.8122 0.8273
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Summary Statistics from Simulation Exercise: c∗

x

Table: Estimation Results for c∗

x on Simulated Data

Object Mean StDev 2.5% 97.5%

Truth 9.3980 0.4144 8.5646 10.2035

ĉ∗

itx 9.3983 0.4136 8.5666 10.1967

Point(ĉ∗

itx) 9.3983 0.4119 8.5748 10.1972

StDev(ĉ∗

itx ) 0.0375 0.0005 0.0366 0.0384
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Summary Statistics from Simulation Exercise: c∗

p

Table: Estimation Results for c∗

p on Simulated Data

Object Mean StDev 2.5% 97.5%

Truth 10.1199 0.4566 9.2141 11.0123

ĉ∗

itp 10.1424 0.4642 9.2202 11.0450

Point(ĉ∗

itp) 10.1424 0.3950 9.3514 10.9057

StDev(ĉ∗

itp) 0.2439 0.0028 0.2384 0.2493
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Summary Statistics from Simulation Exercise: c∗

x

Table: Estimation Results for c∗

x on Simulated Data

Mean(εitx ) StDev(εitx) Max(Abs(εitx )) mean(ε2
itx) StDev(ε2

itx)

0.0003 0.0208 0.0752 0.0004 0.0006
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Summary Statistics from Simulation Exercise: c∗

p

Table: Estimation Results for c∗

p on Simulated Data

Mean(εitp) StDev(εitp) Max(Abs(εitp)) mean(ε2
itp) StDev(ε2

itp)

0.0225 0.2394 1.0312 0.0578 0.0847
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Estimate using PSID and CEX Data

• For now, use 1980-1992 data to match BPP sample

• Two methods of using the imputed “data”:

1 Use the full posterior distribution (full information about the uncertainty

surrounding imputed values)

2 Use the mean of the posterior distribution as a point estimate
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Evolution of Consumption Distribution: Mean

1980 1982 1984 1986 1988 1990 1992
10.05

10.1

10.15

10.2

10.25

year

Posterior Mean − 90p

Point and Posterior Mean − 50p

Posterior Mean − 10p
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Evolution of Consumption Distribution: Std. Deviation

1980 1982 1984 1986 1988 1990 1992
0.3

0.35

0.4

0.45

0.5

0.55

year

Posterior StDev − 90p

Posterior StDev − 50p

Posterior StDev − 10p

Point StDev
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Evolution of Consumption Distribution: Quantiles

1980 1982 1984 1986 1988 1990 1992
9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

year

Posterior Median − 90p

Point − 90p

Point and Posterior Median − 50p

Point − 10p

Posterior Median − 10p
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Summary

• We develop a Bayesian estimator to impute consumption into the PSID
income panel

◮ Overcome computational sampling challenges by implementing a Metropolis

Adjusted Langevin Algorithm

• We establish the performance of the new estimator on simulated data

• We quantify relatively large uncertainty around imputed values

• We demonstrate that using our imputation methodology that

incorporates imputation uncertainty could alter measurement of

economically important objects

• Many ways to improve imputation and use data for economic

applications
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Flexible Approach Allows Many Potential Extensions

• Improving the imputation with more data
◮ Subcategories of consumption, Diary and Survey CEX Data, Aggregate

NIPA data, etc.

• Improving the imputation with a richer statistical model
◮ Interaction terms

◮ Richer demand systems

◮ Richer measurement error modeling (Aguiar & Bils 2013)

◮ Instrumental variables (error-in-variables - Lopes & Polson 2014)

◮ Time series structure
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